

Exercise: GBCD of Y-doped alumina

The aim of this exercise is to calculate and plot the grain boundary plane distribution (GBPD) and the grain boundary character distribution (GBCD) of Y-doped alumina, using the method and data presented in the paper *"Influence of Y and La Additions on Grain Growth and the Grain-Boundary Character Distribution of Alumina"* [1].

Plot:

- Misorientation distribution
- GBPD independent of misorientation
- GBCD at a $60^\circ/[0001]$ misorientation
- GBCD at a $144.2^\circ/[1-210]$ (near $\Sigma 11$) misorientation
- GBCD at a $38.2^\circ/[0001]$ ($\Sigma 7$) misorientation

Instructions:

1. Download segment files:

Download the individual segment files (for 1500°C or 1600°C) from:

http://mimp.materials.cmu.edu/~gr20/Grain_Boundary_Data_Archive/alumina_Y_doped/alumina_Y_doped.html

2. Process segment files:

Copy the downloaded segments into the *2_condition_segments* folder. Edit the input file accordingly, then run *condition_segs.exe*

3. Calculate distributions:

Copy the newly generated file *all_segments.txt* file into *3_calc_discrete_dist* folder: Edit the input file accordingly, then run *calc_discrete_dist.exe*

4. Plot distribution graphs:

Copy the newly generated files *all_segments_gbcd.txt* and *all_segments_gbpd.txt* files into *4_graph_discrete_dist* folder. Edit the input file based on the distribution you want to plot, then run *graph_discrete_dist.exe*.

Conversion of Miller-Bravais indices [hkl] to Cartesian coordinates

$$x = a \times \left(h - \frac{k}{2} - \frac{i}{2} \right)$$

$$y = \frac{\sqrt{3}}{2} \times a \times (k - i)$$

$$z = l \times c$$

Lattice parameters α -alumina

$$a = 4.758 \text{ \AA}$$

$$c = 12.991 \text{ \AA}$$

[1] Bojarski SA, Stuer M, Zhao Z, Bowen P, Rohrer GS (2013): Influence of Y and La Additions on Grain Growth and the Grain-Boundary Character Distribution of Alumina. *Journal of the American Ceramic Society*, Vol 97(2), 622–630. <https://doi.org/10.1111/jace.12669>.